Volume 67
您当前的位置:首页 > 期刊文章 > 过刊浏览 > Volumes 60-71 (2022) > Volume 67
Pottimurthy, Y., Wang, D., Park, C., Patil, S., Tong, A., & Fan, L.-S. (2022). Three-dimensional dynamic characterization of square-nosed slugging phenomena in a fluidized bed. Particuology, 67, 35-46. https://doi.org/10.1016/j.partic.2021.10.001
Three-dimensional dynamic characterization of square-nosed slugging phenomena in a fluidized bed
Yaswanth Pottimurthy, Dawei Wang, Cody Park, Shalin Patil, Andrew Tong, Liang-Shih Fan *
William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
10.1016/j.partic.2021.10.001
Volume 67, August 2022, Pages 35-46
Received 2 August 2021, Revised 7 October 2021, Accepted 13 October 2021, Available online 27 October 2021, Version of Record 30 November 2021.
E-mail: fan.1@osu.edu

Highlights

• Dynamic characteristics of square-nosed slugging are investigated using ECVT.

• Multiple ECVT sensors provided continuous, 3D imaging of the slugging bed flow.

• Three distinct zones are clearly observed during the evolution of the slug.


Abstract

Slugging represents one of the major regimes in fluidization, which occurs in small diameter beds with large bed height-to-diameter ratio or in large diameter beds with internals that resemble multiple small diameter fluidized beds. Slug types include round-nosed slug, wall slug and square-nosed slug. Studies of the slugs have been mainly focused on round-nosed or wall slugs known as half slug, typically occurring in Geldart group A particle fluidization. The square-nosed slug typically occurring for Geldart group D particles appears to be regarded as simple in its structure. The Electrical Capacitance Volume Tomography (ECVT) imaging of the square-nosed slugging phenomena conducted in this study reveals otherwise. That is the structure of the square-nosed slug is, in fact, complex, particularly with respect to its dynamic variation in fluidization. More broadly, this study examines experimentally the hydrodynamic characteristics of the square-nosed fluidization regime. Specifically, simultaneous measurements from multiple ECVT sensors provide non-invasive, continuous, 3-dimensional imaging of the entire flow region of the slugging bed and hence enabling the dynamic characterization of the evolution of the slugs. The analysis of the 3D images reconstructed for real-time gas–solid volume fraction profile of the slugging fluidized bed indicates that there are three different zones, namely, the bottom fluidization zone, the gas slug zone, and the solid slug zone, co-existing in the bed. The three zones present different hydrodynamic characteristics during the slug evolution. It is found that varying the gas velocity of the slugging bed mainly varies the maximum length of the gas slug zone, while it only has a minor effect on the lengths of the bottom fluidization zone and solid slug zone. It also has an insignificant effect on the solid volume fraction of the three zones.

Graphical abstract
Keywords
Gas–solid flow; Fluidized bed; Square-nosed slugging; Electrical Capacitance Volume Tomography