- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• How key toxicity-associated nanomaterial properties impact nano-bio interactions is discussed.
• Analytical methods for studying nano-bio interactions are presented.
• Current regulatory and legislative frameworks regulating nanomaterials are introduced.
• Challenges facing nanomaterials' safety evaluation and possible solutions are given.
Manufactured nanomaterials with unique properties have been extensively applied in various industrial, agricultural or medical fields. However, some of the properties have been identified to be closely related to nanomaterial toxicity. The "nano-paradox" has aroused concerns over the use and development of nanotechnology, which makes it difficult for regulatory agencies to regulate nanomaterials. The key to fulfilling proper nanomaterial regulation lies in the adequate understanding of the impact of nanomaterial properties on nano-bio interactions. To this end, we start the present work with a brief introduction to nano-bio interactions at different levels. Based on that, how key toxicity-associated properties of manufactured nanomaterials (i.e., size, shape, chemical composition, surface properties, biocorona formation, agglomeration and/or aggregation state, and biodegradability) impact their toxicokinetics, cellular uptake, trafficking and responses, and toxicity mechanisms is deeply explored. Moreover, advanced analytical methods for studying nano-bio interactions are introduced. Furthermore, the current regulatory and legislative frameworks for nanomaterial-containing products in different regions and/or countries are presented. Finally, we propose several challenges facing the nanotoxicology field and their possible solutions to shed light on the safety evaluation of nanomaterials.