- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Kinematic characteristics of elastic sieve mat in vibrating flip-flow screen were studied.
• Testing amplitude can be transformed into a function form by Fourier series.
• DEM simulation model of the motion of elastic sieve mat is realized.
• Flow and separation of particles in vibrating flip-flow screen were investigated.
Vibrating flip-flow screens (VFFS) with stretchable polyurethane sieve mats have been widely used in screening fine-grained materials in recent years. In this work, the discrete element method (DEM) is used to study the screening process in VFFS to explain particle flow and separation behavior at the particle scale. Unlike traditional vibrating screens, for VFFS, the amplitude response of each point on the elastic sieve mat is different everywhere. This study measures the kinematics of the elastic sieve mat under different conditions such as different stretched lengths and material loads. To establish the elastic sieve mat model in a DEM simulation, the continuous elastic sieve mat is discretized into multiple units, and the displacement signal of each unit tested is analyzed by Fourier series. The Fourier series analysis results of each unit are used as the setting parameters for motion. In this way, the movement of the elastic sieve mat is approximately simulated, and a DEM model of VFFS is produced. Through the simulation, the flow and separation of different-sized particles in VFFS are studied, and the reasonability of the simulation is verified by a pilot-scale screening experiment. The present study demonstrates the potential of the DEM method for the analysis of screening processes in VFFS.