- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• The NO3−/SO42− ratios were lower in winter.
• Secondary formation associated with RH made dominant contribution to organic matter in winter.
• Biomass burning related to open agricultural fires was essential for organic matter in fall and spring.
The seasonal characteristics of fine particulate matter (PM2.5) were investigated from October 2020 to April 2021 (spreading fall, winter and spring) in Harbin, a city located in northeast China. The mass concentrations of PM2.5 in winter were significantly higher than those in fall and spring. Moreover, our results indicated that various aerosol species had obvious seasonality. The proportions of secondary components were higher in winter than other two seasons. In contrast, the ratios of nitrate to sulfate (NO3−/SO42−) showed lower levels in winter, which was because both the ratios of nitrogen dioxide to sulfur dioxide (NO2/SO2) and the ratios of nitrogen oxidation ratio to sulfur oxidation ratio (NOR/SOR) exhibited lower values in winter than in fall and spring. With PM2.5 increased, the NO3−/SO42− ratios showed increasing trends in all three seasons, which was mainly attributed to the increase of NOR/SOR ratios in fall and spring, and the increase of both NO2/SO2 and NOR/SOR ratios in winter. This result highlighted that nitrate was more important than sulfate as a driver for the growth of PM2.5 during the period of heavy air pollution. Additionally, the sources of organic aerosol (OA) in different seasons were also distinctly different. Overall, the sum of biomass burning OA (BBOA) and secondary OA (SOA) contributed >70% of OA in three seasons. The fractional contributions of BBOA to total OA, notably, exhibited higher levels in fall and spring, because of intensive open agricultural fires. The SOA fractions in OA were larger in winter, likely due to higher relative humidity which facilitated the secondary formation. A large increase in the proportions of BBOA was observed during polluted days in fall and spring compared to clean days. In comparison, during heavily-polluted periods, secondary formation made a dominant contribution to organic matter in winter.