- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• At H0/dp = 200, the ΔP and Hf increase and then abruptly decline, further increased with rising Ug.
• Symmetric and asymmetric spouting occurs with dp of 1000 μm and 700 μm.
• The position of the jet is oscillating like a pendulum for 1000 μm particles.
• Clusters in the freeboard region may be the reason to limit the fountain height.
The hydrodynamic behaviour of the spouted bed in the pharmaceutical industries has been found to be less addressed. The present paper has focused on the hydrodynamic characteristics of a spouted bed where the Cellets™ (Ph.Eur./USP) is adopted as the bed material. Experiments are carried out with three different static bed heights (H0) of shallow depth (2Di ≤ H0 < 3Di) using two different particle sizes. The spouted bed employed with Di/D0 of 5 has given the experimental information on external spouting (Ues) by mapping the pressure drop, and fountain height (Hf) against the superficial gas velocity (Ug) is represented with the image contours, which show the intrinsic behaviour. All the 1000 μm and 700 μm particles have been found to exhibit symmetric and asymmetric spouting. With increasing Ug, the fully suspended particles are limited to a certain height in the freeboard region due to the gas-solid cross-flow, which implies the clusters have identified with the image processing method.