- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
As the primary component of haze, atmospheric inhalable particulate matters (PM10) are highly detrimental to human health. Biomass combustion is one of China's most pivotal sources to aerosols pollution, inducing non-negligible emissions and uncertain risks. PM10 samples directly from 10 representative biomass fuel combustion sources (2 groups covering the reality widely: straws of rice, wheat, corn, corncob, soybean, peanut, rape, sesame; and branches of pine, peach) were collected using the dilution channel sampler and analyzed for chemical compositions and in vitro cytotoxicity to human lung epithelial cell lines A549. The components of PM10 are dominated by organic carbon (OC), followed by water-soluble K+ and Cl−, and rich in metals Fe, Zn, Cr, and Ni. Generally, PM10 emitted from biomass fuel combustions can weaken the antioxidant capacity of cells, and straws emissions, especially rape and peanut straws, show stronger ability to further induce oxidative stress and inflammatory damage than fuelwoods, owing to the key toxic roles of Cr, Ni, and Co. Therefore, reducing the specific source emissions of PM10 from crop straw combustions rich in heavy metals could be an effective oriented strategy to improve environmental air quality and control aerosols pollution precisely for protecting public health.