- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• FLUENT-EDEM is applied in solid-liquid flow simulations with fine particles.
• Influence of turbulence, particle density and size on particle slip velocity are analyzed.
• A new equation is proposed between the turbulence intensity and particle slip velocity.
Turbulent environment improves the flotation recovery of fine particles by promoting the particle–bubble collision rate, which directly depends on the particle slip velocity. However, the existing slip velocity models are not applicable to fine particles in turbulence. The mechanism of turbulence characteristics and particle properties on the slip velocity of fine particles in turbulence was unclear. In this study, a coupled ANSYS FLUENT and EDEM based on computational fluid dynamics (CFD) and discrete element method (DEM) were used to simulate the slip velocity of fine particles in the approximately homogenous isotropic turbulence, which was excited by the grid. The reliability of the used CFD-DEM simulation method was validated against the slip velocity measured by the particle image velocimetry (PIV) experiments. In particular, the effects of the particle shapes, particle densities, and turbulence intensities on the slip velocity have been investigated with this numerical method. Numerical results show that particle shapes have no significant effect on fine particles between 37 and 225 μm. The slip velocity of the spherical particles increases with the turbulence intensity and particle density. Based on the simulated data, a model which has a correlation coefficient of 0.95 is built by using nonlinear fitting.