- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• SAXS is used to characterise nano-scale pore distribution and changes of coal after freezing.
• Change of pore size distribution is mainly concentrated in the radius of 0–7 nm.
• Both pore fractal dimension and radius of gyration of coal increase after freezing.
In the process of coal seam fracturing with liquid nitrogen (LN2), the change of coal pore structure has an important influence on the efficiency of coalbed methane (CBM) extraction. The nano-scale pore size distribution (PSD) in coal particles before and after freezing with LN2 are experimentally studied in this work. Coal samples are collected from four coal mines, where coal and gas outburst accidents have occurred. Small angle X-ray scattering technology (SAXS) and scanning electron microscopy (SEM) are used to study the pore structure changes of coal samples quantitatively and qualitatively. It is found that the scattering intensity of coal samples increases after freezing. The PSD of all samples significantly changes in the range of 0.8–7 nm, showing new pore spaces in 0.8–4 nm and fewer pores in the 4–7 nm range. Both the pore fractal dimension and the radius of gyration of coal samples increase after freezing and are mainly affected by the changes in pores and the anisotropy of the coal matrix. Crack expansion and pore connections are observed in the surface structure of the coal sample using SEM. This study provides a better understanding of the nano-scale mechanism of coal seam fracturing with LN2 for the prevention of coal and gas outbursts.