- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Unsteady state tracer experiments were carried out in conical spouted beds with varying angles.
• Both light and heavy particles were used.
• The axial gas mixing behavior was modeled by a 1-D transient convection-diffusion equation.
• The dispersion coefficients were found in the same range with the cylindrical spouted beds.
• Convection was found more significant than dispersion for light particles compared to heavy ones.
Conical spouted beds operating with high-density particles (ρp > 2500 kg/m3) have recently gained attention because of their potential use as nuclear fuel coaters for next-generation nuclear reactors. In the literature, the number of axial gas mixing studies in conical and conical-cylindrical spouted beds is very limited and all axial mixing studies were carried out with relatively light particles (ρp ≤ 2500 kg/m3). Therefore, the objective of this study was to generate experimental data that can be used to explain the gas axial mixing behavior in conical spouted beds operating with both low- and high-density particles. Experiments were conducted in two (γ = 30°, 60°) conical spouted beds with three different types of particles: zirconia (ρp = 6050 kg/m3), zirconia toughened alumina (ρp = 3700 kg/m3) and glass beads (ρp = 2460 kg/m3). In order to be able to compare experimental data obtained at different conditions, a 1-D convection-diffusion gas mixing model originally developed by San José et al. (1995) was implemented to determine the axial dispersion coefficients. The results show that the axial dispersion coefficients range between 1.75 × 10-2 m2/s and 9.35 × 10-2 m2/s, increase with superficial gas velocity and are higher than the corresponding dispersion coefficients of fixed beds, lower than the dispersion coefficients of fluidized beds and in the same range with the cylindrical spouted beds reported in the literature. The corresponding Peclet numbers were in the range of 0.6–7.8 for all operating conditions and slightly higher Peclet numbers were obtained with glass beads indicating the relative importance of gas convective transport over gas dispersion for light particles compared to heavy particles.