- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• An airborne ultrasonic transducer was designed and applied to agglomeration.
• Sound pressure levels of the agglomeration chamber can reach 156 dB.
• Airborne ultrasonic transducer has good agglomeration effects.
• Light transmittance of smoke rapidly increases to 60% within seconds.
Acoustic agglomeration technology use high-intensity acoustic field to make aerosol particles collide and condense rapidly. Existing studies have shown that 70%–90% of fine particles can be eliminated within minutes using compression drives and air-jet generators. Currently, there are limitations to the sound sources used. In this paper, an airborne ultrasonic transducer with a resonant frequency of 15 kHz is designed, followed by the corresponding numerical simulation and experiments for the evaluation of the vibration modal and sound pressure field. The sound pressure levels (SPL) of the open space and the agglomeration chamber can reach 150 dB and 156 dB, respectively. The agglomeration effect of water droplets, liquid phase smoke, solid phase smoke and mixed smoke is experimentally investigated, and the light transmittance rapidly increases from 8% to 60% within 4 s, 8 s, 5 s and 6 s, respectively. Agglomeration is also effective in the high-frequency range, and we infer that the acoustic wake effect is the predominant mechanism. The elimination effect is promoted with the increasing of SPL until the corresponding secondary acoustic effect is enhanced. Moreover, the agglomeration rate of higher concentration aerosol is significantly better than that of diluted aerosols in ultrasonic agglomeration process.