- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• High-concentration slurry flow in complex fractures was investigated.
• Sand-slickwater flow experiment was conducted in irregular channels.
• The improved CFD-DEM method can describe interactions of particle and wall.
• A dimensionless model was developed to predict the coverage ratio of proppant dune.
Slurry flow and proppant placement in irregular fractures are crucial to evaluate hydraulic fracturing stimulation but need to be better understood. This study aims to investigate how irregular fracture affects proppant transport and distribution using laboratory experiments and micro-scale numerical models. The unresolved method of the computational fluid dynamics (CFD) and the discrete element method (DEM) considers Saffman lift force, Magnus force, and virtual mass force to accurately capture the frequent interaction between proppant and slickwater. Experimental results validated the reliability of the optimized CFD-DEM model and calibrated primary parameters. The effects of crack height and width, bending angle, and distance between the crack and inlet on particle distribution were studied. The results indicated that the improved numerical method could rationally simulate proppant transport in fractures at a scale factor. The small crack height causes downward and upward flows, which wash proppant to the fracture rear and form isolated proppant dunes. A wider region in the fracture is beneficial to build up a large dune, and the high dune can hinder particle transport into the fracture rear. When the crack is close to the inlet, the primary fracture without proppants will close to hinder gas production. The smaller the bending angle, the smaller the proppant dune. A regression model can precisely predict the dune coverage ratio. The results fundamentally understand how complex fractures and natural cracks affect slurry flow and proppant distribution.