- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• A chamber system was designed to study the interactions between submicron aerosol particles and plants.
• Spray drying methods were used to generate and deposit submicron aerosol particles.
• Submicron particles from generators were deposited on model substrates of plant leaves.
• The chamber system can be used to perform long-term exposure studies.
Understanding aerosol-vegetation interactions is vital in ecosystems. However, the interactions remain elusive partly due to the lack of suitable plant growth chamber systems. Particularly, deposition of submicron particles on leaf surfaces is challenging due to its low deposition velocities compared to larger particles. In this work, we present a plant-growth chamber that was used to study the effect of submicron black carbon (BC) particles on the growth and photosynthesis of plants. The chamber system simultaneously enables the growth of multiple plants in pots and the deposition of submicron particles onto them. Two spraying methods assisted by ultrasonic and electrostatic forces were employed as aerosol generators to realize the particle deposition. The flow regime inside the chamber was numerically calculated to predict the transportation of aerosol particles, suggesting the optimal operating conditions of the chamber. The gas-phase particle size distribution measurements showed that generated BC particles were suspended in submicron diameter ranges. The aerosol generators were examined in the chamber using three conductor and insulator substrates as a model of plant leaves. Microscope observations and spectroscopic analysis ascertained that submicron BC particles generated from our generators were deposited on all substrate surfaces. Using the developed chamber system, systematic studies can be performed to advance the fundamental understanding of aerosol-vegetation interactions.