- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Review crystal structure, morphology, pore structure, surface and interface regulation of typical electrode particles.
• Summarize structural characteristics of transition metal oxides, polyanionic compounds and Prussian blue analogues.
• Discuss the effects of particle morphology, pore, surface and interface structure on the electrode performance.
• Provide important guiding principle for improving the overall performance of batteries.
The demand for large-scale energy storage is increasing due to the decreasing non-renewable resources and deteriorating environmental pollution. Developing rechargeable batteries with high energy density and long cycle performance is an ideal choice to meet the demand of energy storage system. The development of excellent electrode particles is of great significance in the commercialization of next-generation batteries. The ideal electrode particles should balance raw material reserves, electrochemical performance, price and environmental protection. Among them, the development of electrode particulate materials with excellent electrochemical properties is the top priority at present. In this review, the typical researches of electrode materials are summarized in terms of crystal structure, morphology, pore structure, surface and interface regulation. Firstly, the structural characteristics and improvement methods of transition metal oxides, polyanionic compounds, Prussian blue and their analogues are introduced. Then, the different effects of particulate morphology, pore, surface and interface structure on the performance of electrode materials are discussed. For designing high-performance electrode materials, preparation route should be set according to the particle properties of the materials and the synergistic effect of various optimization methods should be adopted. At the same time, in addition to the electrode materials, other components of the rechargeable batteries, such as current collector, separator and electrolytes, should be optimized to improve the overall performance of the batteries. This review would provide important guiding principle for designing high-performance electrode particulate materials.