- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Comparison of the smooth IBM to the blocked-off IBM for the simulation of fixed packed bed reactors.
• Comparison of both IBM approaches against experimental results from inline PIV-measurements.
• Very good agreement with experimental results of both IBM approaches for more stable flow regime.
• For unstable flow regimes, blocked-off IBM leads to more diffused flow fields, which is avoided by using smooth IBM.
• At high mesh resolution, no significant differences between both IBM approaches.
Nowadays, the design of fixed packed bed reactors still relies on empirical correlations, which, especially for small tube to particle diameter ratios, are mostly too inaccurate because of the presence of wall effects. Therefore, the simulation of fixed packed bed reactors plays an important role to predict and control the flow and process parameters in such, nowadays and in the future. Because of its straightforward applicability to non-uniform packings with particles of arbitrary shapes, the immersed boundary method (IBM) has advantages over other numerical methods and is used more and more frequently. This paper compares two approaches of IBMs for the simulation of fixed bed reactors with spherical shaped particles. The classic, smooth approach is compared to the straightforward to implement blocked-off method for velocity fields above the fixed bed for particle Reynolds numbers of 300 and 500. Results from experimental inline PIV-measurements of the reactor to be simulated serve as a basis for comparison. Very good agreement with the experiment is found for both simulation methodologies with higher resolutions, considering the more stable flow at a particle Reynolds number of 300. Differences in the different IBM approaches occurred for the more unsteady flow at a particle Reynolds number of 500. Compared to the blocked-off method, the smooth IBM reflects the formation of additional jets and recirculation zones better right above the bed, though increasing the fluid mesh resolution improves the accuracy of the blocked-off method. Overall, a more diffusive behaviour is found for the blocked-off simulations due to the stairstep representation, which is avoided by using interpolation stencils as in the smooth IBM. With higher mesh refinement in the blocked-off IBM this effect can be reduced, but this also increases the computational effort.