- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Synchrotron radiation small-angle X-ray scattering was adopted for the real-time coal pore evolution characterization.
• Impact of coal compositions and stress history on pore structure evolution was comprehensively analyzed.
• Pore structure evolution difference between deep and shallow coal during gas adsorption was investigated.
Coal seam CO2 sequestration is an important option to address global warming. A better knowledge on coal pore structure evolution during gas adsorption can provide guidance for coal seams CO2 sequestration. However, few investigations on the pore structure evolution differences between the deep and shallow coal were conducted during gas adsorption. In this study, based on the real-time synchrotron radiation small-angle X-ray scattering (SAXS) observation, the average pore diameter and pore surface fractal dimension evolution differences between deep and shallow coal were investigated from the aspects of coal compositions and stress history. Two types of coal deformation (inner-swelling and outer-swelling) coexist during gas adsorption. Coal compositions have significant impact on the dominance of deformation type. The dominance of inner-swelling in deep coal is induced by the higher ash contents, and there is the decrease of average pore diameter during gas adsorption. The impact of stress-history (burial depth) on adsorption-induced deformation is more prominent than that of gas adsorption capacity. In deep coal, the surface fractal dimension evolution presents a negative correlation with the evolution of pore diameters. In shallow coal, the surface fractal dimension evolution presents a Langmuir-type correlation with the adsorption time.