- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Maximized solid-angle coverage by using the smallest possible 4-sided detector.
• Cost reduction by choosing plastic scintillators instead of crystals.
• No occurrence of boundary effects.
• Predicted spatial resolution in the low millimeter range, even for a moving source.
This work is the second part of a simulation study investigating the processing of densely packed and moving granular assemblies by positron emission particle tracking (PEPT). Since medical positron emission tomography (PET) scanners commonly used for PEPT are very expensive, a PET-like detector system based on cost-effective organic plastic scintillator bars is being developed and tested for its capabilities. In this context, the spatial resolution of a resting positron source, a source moving on a freely designed model path, and a particle motion given by a discrete element method (DEM) simulation is studied using Monte Carlo simulations and the software toolkit Geant4. This not only extended the simulation and reconstruction to a moving source but also significantly improved the spatial resolution compared to previous work by adding oversampling and iteration to the reconstruction algorithm. Furthermore, in the case of a source following a trajectory developed from DEM simulations, a very good resolution of about 1 mm in all three directions and an average 3D deviation between simulated and reconstructed events of 2.3 mm could be determined. Thus, the resolution for realistic particle motion within the generic grate system (which is the test rig for further experimental studies) is well below the smallest particle size. The simulation of the dependence of the reconstruction accuracy on tracer particle location revealed a nearly constant efficiency within the entire detector system, which demonstrates that boundary effects can be neglected.