- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Generation of Si–O–W bonds speed up the nanocrystallization of Bi2WO6.
• Loads of surface adsorbed oxygen generates during nanocrystallization of Bi2WO6.
• The surface adsorbed oxygen promotes separation of charge carriers.
• O2− is main active substances in photocatalytic reaction.
• Composite catalyst exhibits an enhancement of 2.5 times than Bi2WO6.
Heterogeneous photocatalysts exhibit high catalytic efficiency in the degradation of pollutants, but their stability and repeatability is not very good and requires high structural matching. Simply by nanosizing the pure Bi2WO6 (BWO) photocatalyst without constructing a heterojunction, there is a significant improvement in its performance, with an enhancement effect of about 2.3 times (99.43%). The high photocatalytic degradation efficiency of the material can be attributed to the enhanced light absorption effect brought by the three-dimensional inverse-opal structure SiO2 (IS) and the abundant surface adsorbed oxygen generated after the formation of Si–O–W bonds. In addition, the introduction of IS greatly increases the surface area of nanostructured BWO, which accelerates the charge transfer process, while the adsorbed oxygen promotes the participation of ·O2− in the photocatalytic reaction, thereby accelerating the consumption of photo-generated electrons and ultimately improving the separation of charge carriers. Furthermore, the matched photonic bandgap further improves the absorption and utilization of light of the material. In this work, we constructs Si–O–W bonds to obtain inverse-opal SiO2/Bi2WO6 with uniformly growth of pure phase nano BWO, which provides a feasible strategy for the preparation of high-performance pure-phase photocatalysts.