- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• An algorithm for the DEM simulation of deformable lateral boundaries is proposed.
• Lateral boundary conditions have a significant effect on the micro-scale fabric properties.
• Deformable lateral boundaries produce more realistic stress-strain behaviour.
• Developed algorithm could improve accuracy of modeling soil's micro-macro scale behaviours.
Applying the discrete element method (DEM) in soil mechanics can provide abundant information at the particle-scale and facilitates illustration of the macro-mechanical behaviour of soils based on the inter-particle mechanisms. The triaxial test is one of the most common laboratory methods to study the macro-mechanical behaviour of particulate materials such as soil. However, many problems in geotechnical design can be assumed and simplified as a plane strain phenomenon. Therefore a biaxial test can be conducted to reproduce the macro-mechanical behaviour of soil, where the sample is enclosed by two horizontal rigid platens and a vertical latex membrane, which is a deformable continuous element and allows the enclosed specimen to deform freely while maintaining confining stress during loading. This paper presents an algorithm to represent physical and mechanical characteristics of latex membrane in the 2D DEM simulation of biaxial test using the PFC2D code. To investigate the impact of the lateral boundary conditions on the micro-macro mechanical behaviours of soil samples, two sets of DEM biaxial tests are conducted, i.e. with rigid and deformable lateral boundary conditions. The DEM modeling results indicate that the lateral boundary conditions have a significant effect on the micro-scale fabric properties, thickness and inclination of the shear band. The comparison between these two simulations also demonstrates that the lateral boundary conditions play a major role in the peak and post-peak stress-strain behaviours as well as the dilation and critical state behaviours of granular soils.