- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• A variable-density resolved computational fluid dynamics-discrete element method (CFD-DEM) framework for multiphase systems is presented.
• An improved surface-tension-dominant framework is incorporated into this work.
• The evaporation of the liquid phase is implemented in the resolved CFD-DEM model.
• An improved yet simple capillary force model has been developed in this work.
• The performance of the numerical framework is demonstrated by benchmark cases.
Gas–liquid–solid multiphase systems are ubiquitous in engineering applications, e.g. inkjet printing, spray drying and coating. Developing a numerical framework for modelling these multiphase systems is of great significance. An improved, resolved computational fluid dynamics-discrete element method (CFD-DEM) framework is developed to model the multiphase free surface flow with and without evaporation. An improved capillary force model is developed to compute the capillary interactions for partially floating particles at a free surface. Three well-known benchmark cases, namely drag coefficient calculation, the single sphere settling, and drafting-kissing-tumbling of two particles are conducted to validate the resolved CFD-DEM model. It turns out that the resolved CFD-DEM model developed in this paper can accurately calculate the fluid–solid interactions and predict the trajectory of solid particles interacting with the liquid phase. Numerical demonstrations, namely two particles moving along a free surface when the liquid phase evaporates, and particle transport and accumulations inside an evaporating sessile droplet show the performance of the resolved model.