- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Fully coupled CFD-DEM-VOF model developed and validated through multiple cases.
• Trilinear interpolation improves the cell-size ratio of the model.
• Phase volume conservation achieved via conservative alpha transport equation.
• New insights into particle dispersion and cavity dynamics during bulk particle entry.
• Effect of drop height and particle density on dispersion and cavity profiles studied.
This paper presents the development and validation of a fully coupled computational fluid dynamics—discrete element method—volume of fluid (CFD-DEM-VOF) model to simulate the complex behavior of particle-laden flows with free surfaces. The coupling between the fluid and particle phases is established through the implemented continuity, momentum, and alpha transport equation. The coupled particle forces such as drag, pressure gradient, dense virtual mass, viscous, and interface forces are also integrated, with drag and dense virtual mass forces being dependent on local porosity. The integrated conservative alpha transport equation ensures phase volume conservation during interactions between particles and water. Additionally, we have implemented a trilinear interpolation method designed to operate on unstructured hexahedral meshes. This method has been tested for its ability to properly resolve the coupling effects in the numerical simulations, particularly in cases with a relatively low cell-size ratio. The model is validated through three distinct test cases: single particle water entry, dam break with particles, and water entry of a group of particles case. The experimental setup is built to study the dynamics of the water entry of a group of particles, where three key flow features are analyzed: the evolution of average particle velocity, cavity shape, and particle dispersion cloud profiles in water. The tests involve four different scenarios, including two different water levels (16.1 and 20.1 cm) and two different particle densities (2650 and 4000 kg/m3). High-speed videometry and particle tracking velocimetry (using ImageJ/TrackMate) methods are employed for experimental data acquisition. It is demonstrated that numerical results are in excellent agreement with theoretical predictions and experimental data. The study highlights the significance of vortices in cavity shaping and particle dispersion. The validated CFD-DEM-VOF model constitutes a robust tool for simulating particle-laden flows, contributing valuable insights into the complex interplay between particles and fluids.