- Volumes 96-107 (2025)
-
Volumes 84-95 (2024)
-
Volume 95
Pages 1-392 (December 2024)
-
Volume 94
Pages 1-400 (November 2024)
-
Volume 93
Pages 1-376 (October 2024)
-
Volume 92
Pages 1-316 (September 2024)
-
Volume 91
Pages 1-378 (August 2024)
-
Volume 90
Pages 1-580 (July 2024)
-
Volume 89
Pages 1-278 (June 2024)
-
Volume 88
Pages 1-350 (May 2024)
-
Volume 87
Pages 1-338 (April 2024)
-
Volume 86
Pages 1-312 (March 2024)
-
Volume 85
Pages 1-334 (February 2024)
-
Volume 84
Pages 1-308 (January 2024)
-
Volume 95
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Operating conditions effects on hydrodynamics in fluidized bed were investigated.
• Electrical resistance tomography was used to identify flow regimes.
• Radial gas-solid holdup distribution in different flow regimes were detected.
• BBD and ANOVA were used to identify the variables interaction effects.
The hydrodynamic characteristics in fluidized bed flotation column (FBFC) are critical for optimizing fluidized flotation processes, yet understanding the interactions between operating parameters remains a complex challenge. This study proposes a novel method to classify flow regimes and identify transition velocities in fluidized bed flotation columns. By analyzing gas-solid holdup variations (εg,s) via electrical resistance tomography (ERT), we identified three distinct flow regimes and two transition velocities using εg,s-based criteria. Furthermore, we employed pressure transducer and ERT to analyze how gas velocity (Ug), water velocity (Uw), and particle size (Dp) influence pressure fluctuations, minimum liquid fluidization velocity (Umf), and gas and solid hold-ups distributions. Results showed that Uw and Dp significantly influenced pressure fluctuations, while Ug affected pressure fluctuations mainly for large particles. Umf increased with Dp but remained unaffected by Ug. Higher Uw and Dp led to more uniform distributions of radial gas and solid hold-ups, with Ug influencing distribution only in the fixed bed regime. Finally, the using Box-Behnken design (BBD) and analysis of variance (ANOVA), significant interactions between Ug and Dp for the average differential pressure, and between Uw and Dp for εg,s were identified, with no significant interactions for normalized standard deviation of differential pressure fluctuation. Predictive models with high correlation coefficients were established for these interactions, offering guidance for FBFC optimization.
