- Volumes 96-107 (2025)
-
Volumes 84-95 (2024)
-
Volume 95
Pages 1-392 (December 2024)
-
Volume 94
Pages 1-400 (November 2024)
-
Volume 93
Pages 1-376 (October 2024)
-
Volume 92
Pages 1-316 (September 2024)
-
Volume 91
Pages 1-378 (August 2024)
-
Volume 90
Pages 1-580 (July 2024)
-
Volume 89
Pages 1-278 (June 2024)
-
Volume 88
Pages 1-350 (May 2024)
-
Volume 87
Pages 1-338 (April 2024)
-
Volume 86
Pages 1-312 (March 2024)
-
Volume 85
Pages 1-334 (February 2024)
-
Volume 84
Pages 1-308 (January 2024)
-
Volume 95
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• FOX-7/HMX composite crystals were prepared by rotary evaporation.
• Formation mechanism of FOX-7/HMX composite crystals was analyzed.
• FOX-7 is embedded on the surface of the HMX crystal, forming a co-crystal layer and changing the crystal structure.
• Composite crystals exhibit elevated thermal stability and impact safety.
Enhancing the safety of high-energy explosives (EMs) is crucial for the secure handling of energetic materials during storage, transportation, and use. Compositing multiple energetic materials effectively enhances the insensitivity of explosives. This study used N,N-dimethylformamide (DMF) as a solvent in the rotary evaporation method to prepare 1,1-diamino-2,2-dinitroethene/1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (FOX-7/HMX) composite crystals. By varying the molar ratios of FOX-7 and HMX, this study investigated their effects on the morphology of the composite crystals, and the formation mechanism of the composite crystal was analyzed. The study characterized and tested the crystal structure, thermal decomposition, cook-off performance, and impact sensitivity of the composite crystal. The results indicate that at a 5:5 M ratio of FOX-7 to HMX, the compound degree is 90.79%, and FOX-7 exhibits uniform adhering to the surface of the HMX crystal. FT-IR and XRD patterns analyses revealed shifts in the absorption peak of the composite crystal and the characteristic peak of the XRD curve. FOX-7 crystals were embedded on the surface of HMX crystals, forming a co-crystal layer and altering the crystal structure. Differential scanning calorimetry tests demonstrate that the thermal decomposition temperature of FOX-7/HMX composite crystals is 1.77 °C higher than the raw FOX-7, and during the cook-off test, the composite crystal reaction level is combustion, accompanied by an increase in characteristic drop height to 62.6 cm, indicating improved thermal stability and impact safety.
