- Volumes 96-107 (2025)
-
Volumes 84-95 (2024)
-
Volume 95
Pages 1-392 (December 2024)
-
Volume 94
Pages 1-400 (November 2024)
-
Volume 93
Pages 1-376 (October 2024)
-
Volume 92
Pages 1-316 (September 2024)
-
Volume 91
Pages 1-378 (August 2024)
-
Volume 90
Pages 1-580 (July 2024)
-
Volume 89
Pages 1-278 (June 2024)
-
Volume 88
Pages 1-350 (May 2024)
-
Volume 87
Pages 1-338 (April 2024)
-
Volume 86
Pages 1-312 (March 2024)
-
Volume 85
Pages 1-334 (February 2024)
-
Volume 84
Pages 1-308 (January 2024)
-
Volume 95
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• A curved microchannel with an expansion-contraction array was designed to synergistically enhance Dean flow.
• A comparative study was conducted to explore the focusing mechanism of the proposed microchannel.
• The optimized microchannel achieves effective particle focusing within a 4.34-cm length.
• Effects of particle size and Reynolds number on microchannel focusing performance were investigated.
Particle focusing, which organizes randomly dispersed particles into streamlines, is crucial for particle counting, enrichment, and detection. This process is widely applied in disease diagnosis, biochemical testing, and environmental monitoring. We designed a curved microchannel featuring integrated rectangular expansion-contraction arrays on its inner side. Our design diverges from conventional techniques by harnessing the synergistical effect of Dean flow induced by both structures based on the unique geometric configuration, resulting in a marked improvement in particle focusing efficiency. We validated the focusing performance of the combined microchannel and elucidated inertial focusing mechanisms by integrating experiments with simulations. At a Reynolds number of 83.33, a 4.34-cm-long microchannel can achieve the complete focusing of 10-μm particles, representing an advancement over current designs. Furthermore, our research uncovers a novel observation: the focusing width initially decreases with the expansion region's width and then increases, while the length of the expansion region leads to a gradual decrease in focusing width until it reaches a stable point. Through structural optimization, the dimensionless focusing width of 10-μm particles was reduced from 0.102 to 0.065 at a Reynolds number of 50, and particles of 5 and 15 μm can be completely focused, highlighting its adaptability and exceptional performance across a range of particle sizes. This study not only advances the un1derstanding of particle focusing dynamics but also paves the way for the development of more efficient and versatile microfluidic devices for a multitude of applications.
